Search results for "Ranking SVM"

showing 3 items of 3 documents

Learning Improved Feature Rankings through Decremental Input Pruning for Support Vector Based Drug Activity Prediction

2010

The use of certain machine learning and pattern recognition tools for automated pharmacological drug design has been recently introduced. Different families of learning algorithms and Support Vector Machines in particular have been applied to the task of associating observed chemical properties and pharmacological activities to certain kinds of representations of the candidate compounds. The purpose of this work, is to select an appropriate feature ordering from a large set of molecular descriptors usually used in the domain of Drug Activity Characterization. To this end, a new input pruning method is introduced and assessed with respect to commonly used feature ranking algorithms.

Computer scienceActive learning (machine learning)business.industryFeature vectorPattern recognitionMachine learningcomputer.software_genreKernel methodComputational learning theoryRanking SVMFeature (machine learning)Artificial intelligencePruning (decision trees)businessFeature learningcomputer
researchProduct

2014

This paper investigates the proficiency of support vector machine (SVM) using datasets generated by Tennessee Eastman process simulation for fault detection. Due to its excellent performance in generalization, the classification performance of SVM is satisfactory. SVM algorithm combined with kernel function has the nonlinear attribute and can better handle the case where samples and attributes are massive. In addition, with forehand optimizing the parameters using the cross-validation technique, SVM can produce high accuracy in fault detection. Therefore, there is no need to deal with original data or refer to other algorithms, making the classification problem simple to handle. In order to…

GeneralizationApplied MathematicsProcess (computing)computer.software_genreFault detection and isolationSupport vector machineNonlinear systemComputingMethodologies_PATTERNRECOGNITIONRanking SVMBenchmark (computing)Data miningProcess simulationcomputerAnalysisMathematicsAbstract and Applied Analysis
researchProduct

Feature Ranking of Large, Robust, and Weighted Clustering Result

2017

A clustering result needs to be interpreted and evaluated for knowledge discovery. When clustered data represents a sample from a population with known sample-to-population alignment weights, both the clustering and the evaluation techniques need to take this into account. The purpose of this article is to advance the automatic knowledge discovery from a robust clustering result on the population level. For this purpose, we derive a novel ranking method by generalizing the computation of the Kruskal-Wallis H test statistic from sample to population level with two different approaches. Application of these enlargements to both the input variables used in clustering and to metadata provides a…

Kruskal-Wallis testComputer scienceCorrelation clusteringPopulation02 engineering and technologycomputer.software_genreMachine learning01 natural sciencesRanking (information retrieval)010104 statistics & probabilityKnowledge extractionCURE data clustering algorithmpopulation analysisRanking SVM0202 electrical engineering electronic engineering information engineeringTest statistic0101 mathematicseducational knowledge discoveryeducationCluster analysiseducation.field_of_studybusiness.industryRanking020201 artificial intelligence & image processingData miningArtificial intelligencerobust clusteringbusinesscomputer
researchProduct